

Praktische Durchführung von Liegenschaftsvermessungen Grenzfeststellung - nicht einwandfreie Vermessung mittels Komplexausgleichung LGL Fortbildung Herbst 2023 Hans-Joachim Wank Landratsamt Tübingen Abteilung Vermessung und Flurneuordnung www.kreis-tuebingen.de

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Einsatz des Komplexausgleichungsprogramms SYSTRA

in der

" Vermessungsverwaltung " Baden-Württemberg

Systra

1995	Vorstellung des Programms Systra zur Komplexausgleichung
	Test durch Referat 21 des damaligen Landesvermessungsamts
	Pilotphase bei 5 ehemaligen staatlichen Vermessungsämtern mit 150 Verfahren
2002	Einführung Komplexausgleichungsprogramm SYSTRA im Liegenschaftskataster Baden-Württemberg
	Einbau in die Fortführungskomponente kaRIBik
	Erlass des Wirtschaftsministeriums mit Anwendungsvorschiften
	und Grundeinstellungen
2012	Aufnahme in die Verwaltungsvorschrift für die Durchführung von
	Liegenschaftsvermessungen (LV-Vorschrift – VwVLV)
2022	Modifizierung in der LV-Vorschrift – VwVLV

Systra

Komplexausgleichungsprogramm SYSTRA

technet GmbH Berlin / Stuttgart (Prof. Gründig und Partner)

Ursprung in Deformationsmessung und Tragwerksplanung (Homogenisierungsansatz)

Olympiastadion - München

Fertigstellung: 1972

Architekt: Frei Otto und Behnisch + Partner, Stuttgart

Engineering: TU Stuttgart, Stuttgart

Das System Easy ist das Ergebnis einer kontinuierlichen Programmweiterentwicklung, die ausging von Prof. Dr.-Ing. L. Gründigs Original-Arbeiten am IAGB in Stuttgart zur Formfindung und Analyse für das Münchener Olympia Stadion. Die unglaublich beeindruckenden Strukturen wurden unter Verwendung von Stahlseilnetzen erbaut.

Die Außenhaut ist mit einer Acrylschicht bedeckt.

SYSTRA ist ein Ausgleichungsprogramm zur

- Auswertung
- Analyse
- Optimierung

von nicht einwandfreien Liegenschaftsvermessungen.

SYSTRA arbeitet mit einem funktionalen Modell einer verketteten Ähnlichkeitstransformation

Anwendungsvorteil:

- Insbesondere bei komplexen Linienstrukturen und wenigen identischen Punkten
- Mehrere Beobachtungstypen können lagebestimmend sein (z.B. Spannmaße, polare / orthogonale Aufnahmeelemente)

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Verwaltungsvorschrift zur Durchführung von Liegenschaftsvermessungen (LV-Vorschrift - VwVLV)

Teil 7 Grenzfeststellungen

Abschnitt 5 Vergleich durch Komplexausgleichung

Nrn. 87 – 91

Anlage 10 Ausgabeprotokolle

Anlage 11 Zulässige Standardabweichungen à priori bei der

Komplexausgleichung

LV-Vorschrift - VwVLV

- 87. Grundsätzliches
- 87.1 Die Komplexausgleichung ist eine Ausgleichung von Beobachtungen unterschiedlicher Art und Genauigkeit unter gleichzeitiger Einbeziehung von Bedingungen zwischen Beobachtungen und Unbekannten.

So können beispielsweise Aufnahmesysteme und geometrische Bedingungen mit einbezogen werden.

LV-Vorschrift - VwVLV

87.2 Im Rahmen von Grenzfeststellungen dürfen in einer Komplexausgleichung ausschließlich Aufnahmesysteme nicht einwandfreier Vermessungen aus Zeiten vergleichbarer Qualität (Epoche) bearbeitet werden.

LV-Vorschrift - VwVLV

- 87.2 ... Dabei zählen im ehemals württembergischen Landesteil jeweils als eine Epoche
 - 1. die Zeit der Landesvermessung
 - 2. die Zeit der Ergänzungsvermessungen
 - 3. die Zeit nach den Ergänzungsvermessungen bis zur Technischen Anweisung vom 30. Dezember 1871
 - 4. die Zeit ab der Technischen Anweisung von 1871 bis zur Technischen Anweisung vom 19. Januar 1895
 - 5. die Zeit nach der Technischen Anweisung von 1895Im ehemals hohenzollerischen Landesteil gelten entsprechende Epochen.

LV-Vorschrift - VwVLV

87.2 ... In begründeten Ausnahmefällen können Katasternachweise unterschiedlicher Epochen gemeinsam ausgewertet werden (beispielsweise bei ungünstiger Verteilung der identischen Punkte).

Die nicht einwandfreien Vermessungen im ehemals badischen Landesteil können in der Regel als eine Epoche betrachtet werden.

LV-Vorschrift - VwVLV

- 87.3 In der Komplexausgleichung werden
 - die Aufnahmesysteme des Katasternachweises mit Schätzung der Genauigkeiten der jeweiligen Aufnahmeelemente in einer Ausgleichung mittels identischer Punkte rechnerisch wiederhergestellt
 - die identischen Punkte auf Übereinstimmung mit dem Katasternachweis geprüft und
 - Landeskoordinaten f
 ür die nicht identischen Punkte berechnet.

LV-Vorschrift - VwVLV

- 88 Aufnahmeelemente und Unbekannte
- In die Komplexausgleichung dürfen grundsätzlich nur Aufnahmeelemente des Katasternachweises (Nummer 88.2) eingeführt werden.
- 88.2 Aufnahmeelemente des Katasternachweises sind:
 - Identische Punkte (R, H)
 - orthogonale Messungslinien (Abszisse, Ordinate)
 - polare Aufnahmeelemente (Richtungen, Strecken)
 - Spannmaße
 - geometrische Bedingungen (Geradlinigkeit, Bogenschnitt, Geradenschnitt)
 - Soldner-Koordinaten (sofern die zugrunde liegenden Aufnahmeelemente nicht verwendet werden können)

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Ablauf der Berechnung einer Komplexausgleichung mit Systra:

- 1. Vorläufige Berechnung
- 2. Analyselauf (Grenzfeststellung)
- 3. Komplexausgleichung (Neupunktberechnung)

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Vorläufige Berechnung (Ausgleichung 1. Art) Allgemein:

- → wenn zu wenig identische Punkte im Verfahren vorhanden sind
- → wenn hochgradige Nichtlinearität vorliegt (Spannmaße etc.)

Ziel der vorläufigen Berechnung

- Berechnung von Näherungskoordinaten als Startwerte für die nachfolgende Ausgleichung 2. Art
 - → Analyselauf Grenzfeststellung
- Aufdeckung ggf. vorhandener grober Fehler (Ausreißer)

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Analyselauf (Grenzfeststellung)

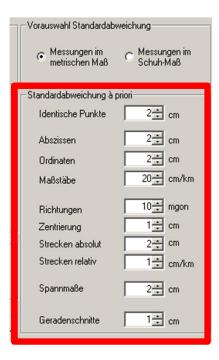
Grundsätzliches

- Ausgleichung 2. Art
- Prüfung des Datenmaterials auf grobe Fehler
- Ausgleichung erfolgt mit beweglichen identischen Punkten
 - -- Prüfung der Punktlage (bei ausreichender Redundanz)
 - -- Festhalten (0.1 cm) bei fehlender Redundanz
- Fehlerhafte Beobachtungen werden sukzessive verworfen Richtwert für grobe Fehler: NV > 3.0

Analyselauf (Grenzfeststellung)

Grundsätzlich:

Gewichtung so ansetzen "wie gemessen wurde" (in Abhängigkeit der Messgenauigkeit)


→ Schuh, Rute, ganz, halb, viertel, zehntel, Metermaß auf cm?? (keine Pauschalierung)

Ansonsten gilt:

- Einheitliche Festlegung für jede Art von Aufnahmeelementen,
 z.B.: Abszisse, Ordinate, Spannmaße gleich genau gemessen;
- Messung rechter Winkel, auch im badischen Landesteil bis 1903, nachweislich mit der Kreuzscheibe

Grundlagen zur Komplexausgleichung Analyselauf (Grenzfeststellung)

Grundlagen zur Komplexausgleichung Analyselauf (Grenzfeststellung)

Überlegungen während der Bearbeitung auf Grund der Erkenntnisse aus der Statistik Beobachtungsgruppen:

Zentrische Aufstellen der Punkte? → erst mit Stabstativ möglich

Geländeverhältnisse:

Abszisse, Ordinate, Spannmaße gleich – unterschiedlich?

Analyselauf (Grenzfeststellung)

Untersuchung auf Lageidentität:

Übereinstimmung vorgefundener Abmarkungen (identische Punkte)

mit den Aufnahmeelementen des Katasternachweises

Erfolgt ausschließlich durch → "Statistische Überprüfung"

Analyselauf (Grenzfeststellung)

- 89. Statistische Überprüfung der Aufnahmeelemente
- Die Untersuchung auf Übereinstimmung der vorgefundenen Abmarkungen mit dem Katasternachweis erfolgt grundsätzlich durch statistische Überprüfung der Aufnahmeelemente des Katasternachweises.

Zur statistischen Überprüfung sind für jedes Aufnahmeelement zu berechnen:

- die Verbesserung (V),
- die normierte Verbesserung (NV),
- der Redundanzanteil (EV) und
- der Schätzwert für den groben Fehler (GF).

Analyselauf (Grenzfeststellung)

- Verbesserung (V)
- normierte Verbesserung (NV)
- Redundanzanteil (EV)
- Schätzwert für den groben Fehler (GF)

6 0 225/759 3468484.50 5353212.10 120.4 3.7 3.3 5 Quadratisches Mittel SL = 5.2 cm.

Orthogonale Messwerte (5-Parameter-Transformation)

System	0-Punk	t-Y 0-P	unkt-X		AY	BY	Ma	Bstab-Y	S(V)	V-Y	EV-Y	GF-Y	NV-Y
parameter	PH	H-Y	PHI-X		AX	BX	Ma	Bstab-X		V-X	EV-X	GF-X	NV-X
Ifd. Nr	Punktnr.	Ordinate	S(V) om	V-Y cm	EV-Y %	GF-Y cm	NV-Y	Abszisse	S(V) cm	V-X cm	EV-X %	GF-X cm	NV-X
Vorgana		4976 C 2	240										

Vorga	ang:		1876 S.21	9										
Laen	genei	nheit:	1 = 1.00000	00										
Syste	m: 1	3468478.	378 535320	1.533	0.4507	72 0.8	92850	0.	999749	20.0	25.1	14.6	-171.8	3.3
		129.7	778 2	9.778	0.4510	21 0.8	92358	1.	000300	20.0	-30.0	26.0	115.3	2.9
1	0	225/752	15.920	2.0	-0.2	4.5	4.7	0.5	-30.300	2.0	-0.6	37.3	1.6	0.5
2	0	225/753	17.620	2.0	-9.7	56.9	17.0	6.4 *	-25.700	2.0	1.5	71.0	-2.2	0.9
3	0	225/004	0.000	2.0	5.3	57.2	-9.3	3.5 *	-17.440	2.0	-0.6	67.4	0.8	0.3
4	0	225/754	17.700	2.0	-2.4	35.3	6.7	2.0	-17.440	2.0	-1.9	63.2	2.9	1.2
5	0	225/007	-11.340	2.0	-0.2	59.9	0.3	0.1	-8.440	2.0	-7.5	60.7	12.3	4.81
6	0	225/006	-15.320	2.0	1.4	59.6	-2.4	0.9	-8.170	2.0	-3.3	59.8	5.5	2.1
7	0	225/756	26.400	2.0	1.0	54.0	-1.9	0.7	-1.280	2.0	2.2	39.3	-5.5	1.7
8	V	9	17.840	2.0	3.5	71.3	4.9	2.0	-0.840	2.0	0.6	75.8	-0.7	0.3
9	0	225/009	-4.240	2.0	2.0	61.8	-3.2	1.2	-0.040	2.0	-0.4	62.2	0.6	0.2
10	0	225/003	0.000	2.0	-0.1	74.1	0.1	0.1	0.000	2.0	-1.3	73.1	1.8	0.8
11	0	225/010	-10.540	2.0	1.7	61.8	-2.7	1.1	5.630	2.0	2.3	61.5	-3.8	1.5
12	0	225/011	-16.600	2.0	2.9	61.3	4.7	1.8	6.320	2.0	2.4	60.1	-4.0	1.5
13	0	225/757	30.200	2.0	-4.4	39.9	11.1	3.5 *	6.480	2.0	-0.5	32.2	1.6	0.5
14	0	225/758	20.300	2.0	2.9	50.4	-5.8	2.0	8.410	2.0	-2.2	43.1	5.1	1.7
15	0	225/759	0.250	2.0	0.5	35.8	-1.5	0.4	11.950	2.0	1.5	43.3	-3.4	1.1
16	0	225/013	-3.940	2.0	0.7	61.6	-1.1	0.4	12.150	2.0	2.9	62.1	-4.6	1.8
17	0	225/012	-15.420	2.0	-2.4	60.9	4.0	1.6	12.850	2.0	1.3	60.3	-2.2	0.9
18	0	225/018	0.000	2.0	2.4	54.5	4.3	1.6	32.450	2.0	-0.6	59.7	1.0	0.4
19	0	225/019	4.350	2.0	-2.7	53.2	5.1	1.9	34.150	2.0	8.3	58.9	-14.0	5.41
20	0	225/014	-9.100	2.0	-2.0	52.8	3.9	1.4	35.650	2.0	4.2	58.9	7.1	2.7

.....

Analyselauf (Grenzfeststellung)

89.2 Normierte Verbesserung:

NV kleiner gleich 3 (in der Regel)

- → Es werden keine groben Fehler vermutet
- → Katasternachweis und Abmarkung sind

als übereinstimmend anzusehen

Orthogonale Messwerte (5-Parameter-Transformation)

System paramete	0-Punk		nkt-X PHI-X		AY AX	BY BX		ßstab-Y ßstab-X	S(V)			GF•Y GF•X	
Ifd.	Punktnr.	Ordinate	S(V)	V-Y	EV-Y		NV-Y	Abszisse	S(V)		EV-X		NV-X
Nr			cm	cm	%	cm			cm	cm	%	cm	
Vorgang:		1876 S.2	19										
Laengen	einheit:	1 = 1.0000	00										
System: 1	3468478.	878 535320	1.533	-0.4507	72 0.8	92850	0	.999749	20.0	25.1	14.6	-171.8	3.3 *
	129.	778 2	9.778	0.4510	21 0.8	92358	1	.000300	20.0	-30.0	26.0	115.3	2.9
1 0	225/752	15.920	2.0	-0.2	4.5	4.7	0.5	-30.300	2.0	-0.6	37.3	1.6	0.5
2 0	225/753	17.620	2.0	-9.7	56.9	17.0	6.4 *	-25.700	2.0	1.5	71.0	-2.2	0.9
3 0	225/004	0.000	2.0	5.3	57.2	-9.3	3.5 *	-17.440	2.0	-0.6	67.4	8.0	0.3
4 0	225/754	17.700	2.0	-2.4	35.3	6.7	2.0	-17.440	2.0	-1.9	63.2	2.9	1.2
5 0	225/007	-11.340	2.0	-0.2	59.9	0.3	0.1	-8.440	2.0	-7.5	60.7	12.3	4.8*
6 0	225/006	-15.320	2.0	1.4	59.6	-2.4	0.9	-8.170	2.0	-3.3	59.8	5.5	2.1
7 0	225/756	26.400	2.0	1.0	54.0	-1.9	0.7	-1.280	2.0	2.2	39.3	-5.5	1.7
8 V	9	17.840	2.0	3.5	71.3	4.9	2.0	-0.840	2.0	0.6	75.8	-0.7	0.3

Analyselauf (Grenzfeststellung)

89.2 Normierte Verbesserung:

NV größer 3

- → Vermutung eines groben Fehlers
- → Katasternachweis und Abmarkung sind nicht als übereinstimmend anzusehen

Maßstab-Y S(V) V-Y EV-Y GF-Y NV-Y

Messwerte (5-Parameter-Transformation)

0-Punkt-Y 0-Punkt-X

Ordinate	PHI-X	1	X	BX	A/a/	3stab-X		1/_V	EV.V		
Ordinata				- UA	IVICI	stan-v		V-A	L V-X	GF-X	NV-X
Ci dinate	S(V)	V-Y cm	EV-Y %	GF-Y cm	NV-Y	Abszisse	S(V) cm	V-X cm	EV-X %	GF-X cm	NV-X
1876 S.2	19										
= 1.0000	00										
78 535320	1.533 -	0.4507	72 0.8	92850	0	.999749	20.0	25.1	14.6	-171.8	3.3 *
78 2	29.778	0.4510	21 0.8	92358	1	.000300	20.0	-30.0	26.0	115.3	2.9
15.920	2.0	-0.2	4.5	4.7	0.5	-30.300	2.0	-0.6	37.3	1.6	0.5
17.620	2.0	-9.7	56.9	17.0	6.4 *	-25.700	2.0	1.5	71.0	-2.2	0.9
0.000	2.0	5.3	57.2	-9.3	3.5 *	-17.440	2.0	-0.6	67.4	8.0	0.3
17.700	2.0	-2.4	35.3	6.7	2.0	-17.440	2.0	-1.9	63.2	2.9	1.2
-11.340	2.0	-0.2	59.9	0.3	0.1	-8.440	2.0	-7.5	60.7	12.3	4.8 *
-15.320	2.0	1.4	59.6	-2.4	0.9	-8.170	2.0	-3.3	59.8	5.5	2.1
26.400	2.0	1.0	54.0	-1.9	0.7	-1.280	2.0	2.2	39.3	-5.5	1.7
17.840	2.0	3.5	71.3	4.9	2.0	-0.840	2.0	0.6	75.8	-0.7	0.3
-4.240	2.0	2.0	61.8	-3.2	1.2	-0.040	2.0	-0.4	62.2	0.6	0.2
0.000	2.0	-0.1	74.1	0.1	0.1	0.000	2.0	-1.3	73.1	1.8	0.8
-10.540	2.0	1.7	61.8	-2.7	1.1	5.630	2.0	2.3	61.5	-3.8	1.5
-16.600	2.0	2.9	61.3	4.7	1.8	6.320	2.0	2.4	60.1	-4.0	1.5
30.200	2.0	-4.4	39.9	11.1	3.5 *	6.480	2.0	-0.5	32.2	1.6	0.5
20.300	2.0	2.9	50.4	-5.8	2.0	8.410	2.0	-2.2	43.1	5.1	1.7
	= 1.00000 78 535320 78 2 15.920 17.620 0.000 17.700 -11.340 -15.320 26.400 17.840 -4.240 0.000 -10.540 -16.600 30.200	1876 S.219 = 1.000000 78 553201.533 78 29.778 15.920 2.0 17.620 2.0 17.620 2.0 17.700 2.0 -11.340 2.0 -15.320 2.0 26.400 2.0 17.840 2.0 -4.240 2.0 0.000 2.0 -10.540 2.0 -16.600 2.0 30.200 2.0	1876 S.219 = 1.000000 78 5353201.533 -0.4507 78 29.778 0.4510 15.920 2.0 -0.2 17.620 2.0 -9.7 0.000 2.0 5.3 17.700 2.0 -2.4 -11.340 2.0 -0.2 -15.320 2.0 1.4 26.400 2.0 1.0 17.840 2.0 3.5 -4.240 2.0 2.0 -10.540 2.0 1.7 -10.540 2.0 1.7 -16.600 2.0 2.9 30.200 2.0 -4.4	1876 S.219 = 1.000000 78 5353201.533 -0.450772	1876 S.219 = 1.000000 78 5353201.533	1876 S.219 = 1.000000 78 5353201.533 -0.450772	1876 S.219 = 1.000000 78	1876 S.219 = 1.000000 78 5353201.533 -0.450772	1876 S.219 = 1.000000 78	1876 S.219 = 1.000000 78 5353201.533	1876 S.219 = 1.000000 78 5353201.533

Analyselauf (Grenzfeststellung)

89.4 Statistik Beobachtungsgruppen:

Statistik Beobachtungsgruppen

a posteriori Wert der Standardabweichung	Beobachtungsgruppe	Varianzanteil	Redun	danzanteil	VVP
der Standardabweichung	Insgesamt	2.12	42.0	100.0 %	188.69
	Identische Punkte	2.57	9.4	22.4 %	62.17
	Spannmaße	1.23	5.6	13.2 %	8.42
	Abszissen	2.00	14.6	34.9 %	58.86
	Ordinaten	2.15	11.9	28.4 %	55.13
Varianzantaile	Maßstäbe	2.98	0.5	1.1 %	4.10

Varianzanteil:

→ Erwartungswert von 1 Richtwert, Abweichungen +/- 30% können toleriert werden.

Redundanzanteil:

→ Aussagekraft: > 15 besser > 20 %

Redundanzanteil allgemein

100 %	voll kontrollierte Beobachtung
100 – 40 %	gut kontrollierte Beobachtung
40 – 10 %	kontrollierte Beobachtung
10 – 1 %	schlecht kontrollierte Beobachtung
1 – 0 %	nicht kontrollierte Beobachtung
UNKONTROLLIERT	Kontrolle durch andere Beobachtungen
	ist nicht vorhanden Empfehlung:
	Kontrolle der Werte auf Eingabefehler

Analyselauf (Grenzfeststellung)

Größte normierte Verbesserung:

Größter NV Wert → Fehler wird vermutet

Größte normierte Verbesserungen

lfd.Nr	Beobachtungstyp System/Punk	t	auf/von Punkt	nach Punkt	Beobachtung	S(V)	NV	ΕV	
1	Identischer Punkt		0 225/753			2.0	7.2*	36.0	
2	Ordinate 1		0 225/753		17.620	2.0	6.4*	56.9	
3	Identischer Punkt		0 225/019			2.0	5.8*	28.0	
4	Abszisse		0 225/019		34.150	2.0	5.4*	58.9	
5	Identischer Punkt		0 225/007			2.0	4.8*	30.1	4
6	Abszisse		0 225/007		-8.440	2.0	4.8*	60.7	
7	Identischer Punkt		V 9			2.0	4.5*	49.1	
8	Ordinate 1		0 225/004		0.000	2.0	3.5*	57.2	
9	Ordinate 1		0 225/757		30.200	2.0	3.5*	39.9	
10	Δheziese :	,	V 9		24 940	2.0	3.3*	53.3	

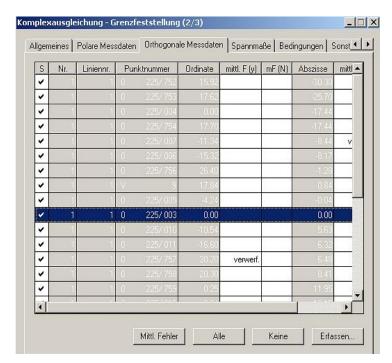
Tipp: Beinhalten mehrere Beobachtungen denselben Punkt, ist dies besonders verdächtig.

Analyselauf (Grenzfeststellung)

Meldung "--- unkontrolliert ---"

- Kontrolle durch eine weitere Beobachtung nicht möglich
- Beobachtungsdaten (Erfassung) sind auf Eingabe Tippfehler zu prüfen

Vorga Laend	_	nheit:	1876 S.21 1 = 1.00000											
Syste	m: 1		879 535320					_	.999767	20.0	23.3		-169.3	3.1 *
		129.	<u>775 2</u>	<u>9.775 </u>	0.4509	<u>58_0.8</u>	<u>92398 </u>	1	.000270	20.0	<u>-27.0</u>	25.7	104.8	<u>2.7</u>
1	0	225/752	15.920	2.0	-0.1	4.4	3.2	0.3	-30.300	2.0	-0.4	36.8	1.1	0.3
2	0	225/753	17.620	2.0	-10.4	52.7	19.8	7.2*	-25.700	2.0	2.3	68.7	-3.3	1.4
3	0	225/004	0.000	2.0	5.1	56.8	-9.0	3.4*	-17.440	2.0	-0.6	67.3	0.9	0.4
4	0	225/754	17.700	2.0	0.0		unkon t	rolliert	-17.440	2.0	-1.2	57.8	2.1	0.8
5	0	225/007	-11.340	2.0	-0.3	59.7	0.5	0.2	-8.440	2.0	-7.4	60.7	12.3	4.8*
6	0	225/006	-15.320	2.0	1.3	59.4	-2.2	0.9	-8.170	2.0	-3.3	59.7	5.5	2.1
7	0	225/756	26.400	2.0	0.5	44.0	-1.1	0.4	-1.280	2.0	1.6	28.3	-5.7	1.5
8	٧	9	17.840	2.0	3.6	67.5	-5.3	2.2	-0.840	2.0	-0.1	70.4	0.2	0.1
9	0	225/009	-4.240	2.0	1.9	61.7	-3.0	1.2	-0.040	2.0	-0.3	62.1	0.6	0.2
10	0	225/003	0.000	2.0	-0.4	72.5	0.6	0.3	0.000	2.0	-1.4	72.9	2.0	0.8
11	0	225/010	-10.540	2.0	1.6	61.8	-2.6	1.0	5.630	2.0	2.4	61.5	-3.9	1.5



Analyselauf (Grenzfeststellung)

Eliminierung grober Fehler:

Fehler in den Messwerten:

Verwerfen des Maßes

Analyselauf (Grenzfeststellung)

Eliminierung grober Fehler:

Fehler im identischen Punkt:

- Abmarkung wurde örtlich aufgesucht und aufgenommen, Punktlage falsch
 - → Verwerfen des identischen Punktes

IP + N

Berechnung neuer Landeskoordinaten

nogonale	Mess	daten Span	nmaße Be	dingungen	Sonstige Koo	rdinaten
verw.	Pur	nktnummer	mittl. Pktf.	Punktart	Punktstatus	Lagesta
ΙP	0	225/ 003	and the state of the state of	GP	gültig	endgi
IP+N	0	225/ 004	verwerf.	GP	gültig	endgi
ΙP	0	225/006	0.0000000000000000000000000000000000000	GP	gültig	endgi
ΙP	0	225/007		GP	gültig	endgi
ΙP	0	225/009		GP	gültig	endgi
ΙP	0	225/010		GP	gültig	endgi
7700	900	40000000000		0.00		

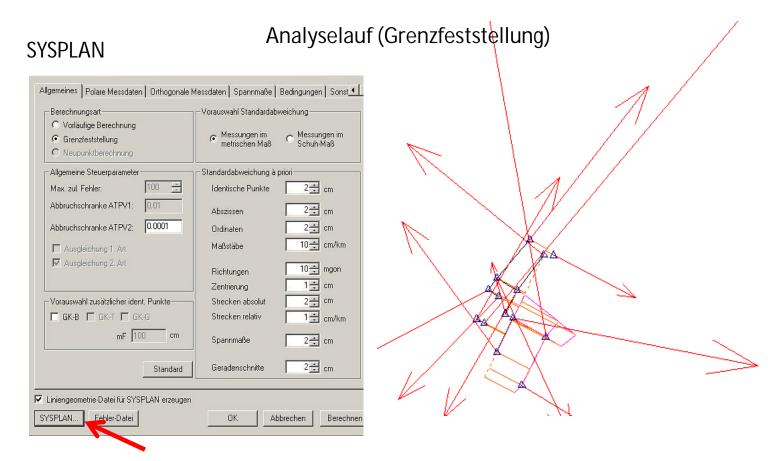
Analyselauf (Grenzfeststellung)

Eliminierung grober Fehler Fehler im identischen Punkt:

- Landeskoordinaten bereits vorhanden
 und nachweislich früher richtig bestimmt
 - → entsprechender Katasternachweis wird verworfen

Orthogonale Messdaten Spannmaße Bedingungen Sonstige Koordinaten Ident. Punkte 🚺										
Nr.	Liniennr.	Po	unktnummer	Ordinate	mittl. F (y)	mF (N)	Abszisse	mittl. F (x)		
1	1	0	225/ 006	-15.32			-8.17			
1	1	0 225/756 V 9		26.40			-1.28			
1	1			17.84			-0.84			
1	1	0	225/ 009	-4.24			-0.04			
1	1	0	225/ 003	0.00			0.00			
1	1	0	225/ 010	-10.54			5.63			
1	1	0	225/ 011	-16.60			6.32			
1	1	0	225/ 757	30.20	verwerf.		6.48			
1	1	0	225/ 758	20.30			8.41			
1	1	0	225/ 759	0.25			11.95			
1	1	0	225/ 013	-3.94			12.15			
1	1	0	225/ 012	-15.42			12.85			
1	1	0	225/ 018	0.00			32.45			
1	1	0	225/ 019	4.35			34.15			
1	1	0	225/ 014	-9.10			35.65	verwerf.		
4		^	005 (350	2.00			0.00	I I		

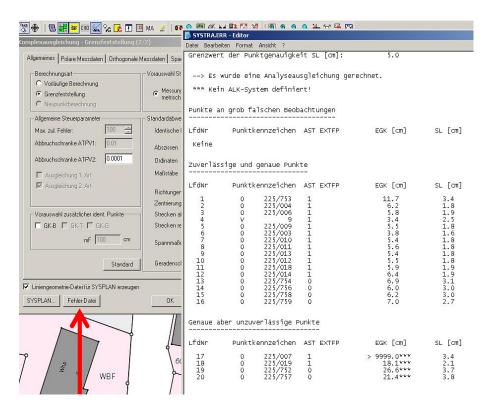
Analyselauf (Grenzfeststellung)


Eliminierung grober Fehler

Fehler im identischen Punkt hier Gebäudeeck:

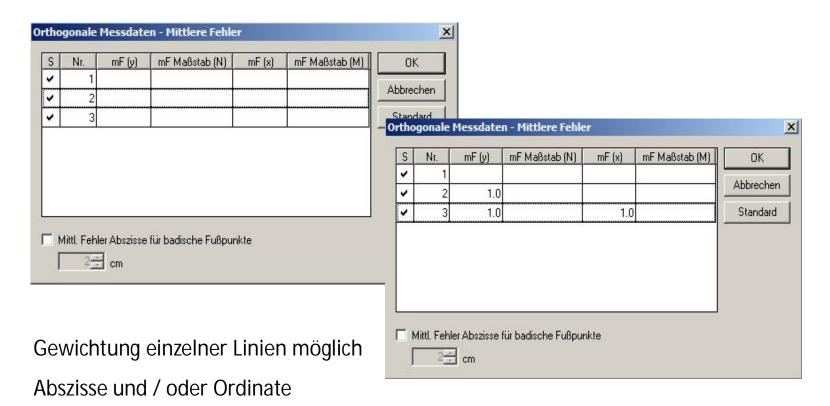
nimmt an der Ausgleichung mit dem "Gewicht 0" teil (Wärmedämmung)

rthogonale Messdaten Spannmaße Bedingungen Sonstige Koord												
verw.	Pur	nktnummer	mittl. Pktf.	Punktart	Punktstatus	La						
IΡ	0	225/ 003		GP	gültig							
IΡ	0	225/ 004		GP	gültig							
IΡ	0	225/ 006		GP	gültig							
ΙP	0	225/ 007		GP	gültig							
IΡ	0	225/ 009		GP	gültig							
ΙP	0	225/010		GP	gültig							
IP	V	711	Gewicht 0	n.def	gültig							
IP	0	225/012		GP	gültig							
ΙP	0	225/013		GP	gültig							
IP	0	225/014		GP	gültig							



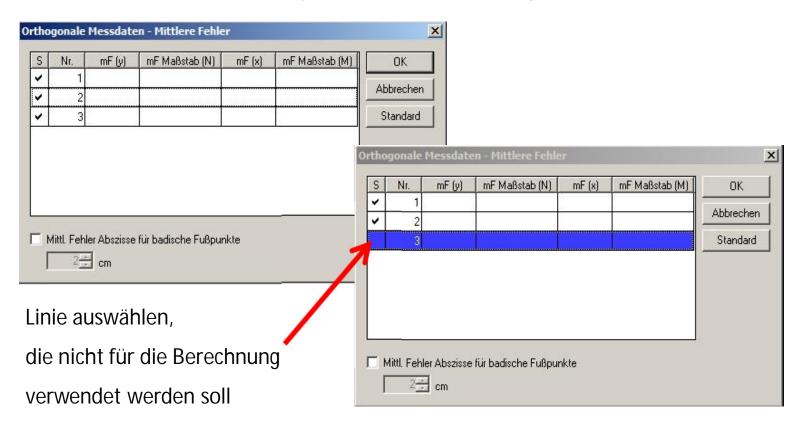
Analyselauf (Grenzfeststellung)

SYSPLAN Fehler-Datei

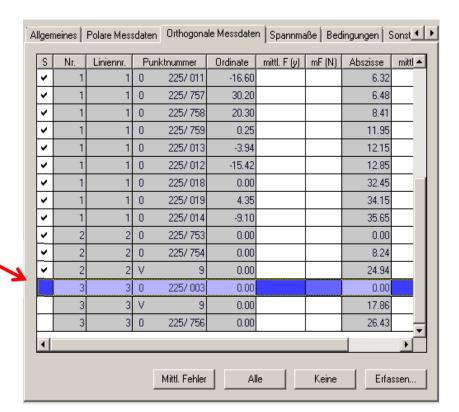


Grundlagen zur Komplexausgleichung Analyselauf (Grenzfeststellung)

S	Nr.	Liniennr.	Pun	ktnummer	Ordinate	mittl. F (y)	mF (N)	Abszisse	mittl 🔺
~	1	1	0	225/011	-16.60			6.32	
<u> </u>	1	1	0	225/ 757	30.20			6.48	
~	1	1	0	225/ 758	20.30			8.41	
~	1	1	0	225/ 759	0.25			11.95	
~	1	1	0	225/ 013	-3.94			12.15	
~	1	1	0	225/012	-15.42			12.85	
~	1	1	0	225/018	0.00			32.45	
~	1	1	0	225/019	4.35			34.15	
7	1	1	0	225/014	-9.10			35.65	
~	2	2	0	225/753	0.00			0.00	
~	2	2	0	225/754	0.00			8.24	
~	2	2	٧	9	0.00			24.94	
y]	3	3	0	225/ 003	0.00			0.00	
~	3	3	٧	9	0.00			17.86	
~	3	3	0	225/756	0.00			26.43	
1									Þ
				Mittl. Fehler	All	e	Keine	Erfa	ssen



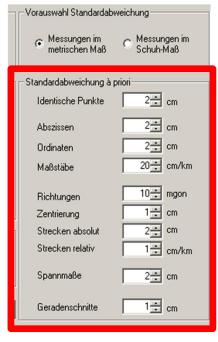
Analyselauf (Grenzfeststellung)


Analyselauf (Grenzfeststellung)

Analyselauf (Grenzfeststellung)

Linie auswählen, die nicht für die Berechnung verwendet werden soll. Alternativ Doppelklick

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen



Analyselauf (Grenzfeststellung)

- Bearbeitungsstrategie -

Grundeinstellungen der zulässigen Standardabweichungen a priori:

(wird vom Programm vorgegeben)

Grundsätzlich:

Einheitliche Festlegung

für jede Art von Aufnahmeelementen

Abweichungen von Grundeinstellung:

- Zulässig nur in Ausnahmefällen
- Begründung im Ausgabeprotokoll

Analyselauf (Grenzfeststellung)

- Bearbeitungsstrategie -

Abweichung von der Grundeinstellung der zulässigen Standardabweichungen a priori:

- Standardabweichung à priori-1.5 ♦ cm Identische Punkte 1.5 ⇔ cm Abszissen 3<mark>÷</mark> cm Ordinaten 20 ⇌ cm/km Maßstäbel 10÷ mgon Richtungen 1÷ Zentrierung cm 2<mark>⊕</mark> cm Strecken absolut Strecken relativ 1 ⊕ cm/km Spannmaße 3≑ cm 1 ; cm Geradenschnitte
- Zu beachten:
- Identische Punkte: schlechte Identifizierbarkeit aller
 Punkte (unförmig, beschädigt)
- Streckenmessung (Abszisse, Ordinate, Spannmaße)
 alle gleich "gut", "schlecht" gemessen, Hangneigung etc.

Statistik Beobachtungsgruppen

Beobachtungsgruppe	Varianzanteil	Redun	VVP	
Insgesamt	0.98	85.0	100.0 %	81.66
Identische Punkte	1.07	8.3	9.8 %	9.53
Spannmaße	0.83	10.6	12.4 %	7.32
Abszissen	0.99	35.5	41.8 %	34.98
Ordinaten	0.97	29.6	34.9 %	27.71
Maßstäbe	1.49	1.0	1.1 %	2.12

Analyselauf (Grenzfeststellung)

- Bearbeitungsstrategie -

Abweichungen von Grundeinstellung der zulässigen Standardabweichungen a priori:

Standardabweichung à	priori-
Identische Punkte	1.5 cm
Abszissen	1.5 cm
Ordinaten	3 <u>÷</u> cm
Maßstäbe	20 cm/km
Richtungen	10∰ mgon
Zentrierung	1 <mark>⊕</mark> cm
Strecken absolut	2 <mark>÷</mark> cm
Strecken relativ	1 ⊕ cm/km
Spannmaße	3 <u>*</u> cm
Geradenschnitte	1 cm

- Feststellung grober Fehler und
 Verwerfung fehlerhafter Beobachtungen
- Varianzanteil ungleich 1 (+ / 30 %)
- Anpassen der Steuergrößen schrittweise (0,5)
 Vor Änderung der Steuergrößen,
 Rücknahme der bereits eliminierten groben Fehler
- Erneuter Analyselauf mit erneutem Eliminieren der groben Fehler

- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Komplexausgleichung (Neupunktberechnung)

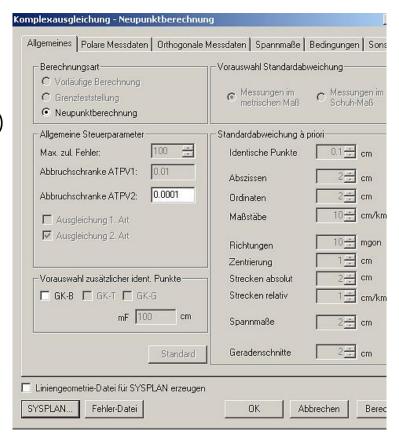
Ausgleichung 2. Art

- > Berechnung der ausgeglichenen Koordinaten der Neupunkte
- > Ausgleichung mit Anschlusszwang
- > Berechnung der statistischen Parameter

Komplexausgleichung (Neupunktberechnung)

- Nach der Eliminierung aller groben Fehler im Analyselauf (Grenzfeststellung)
 und
- Verwerfen fehlerhafter Beobachtungen und der entsprechenden identischen Punkte

90. Nicht identische Punkte

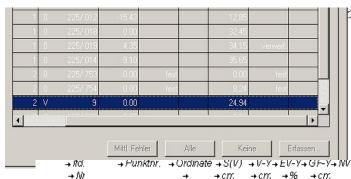

Nach der abschließenden Überprüfung sind aus den Landeskoordinaten der identischen Punkte und den Aufnahmeelementen des Katasternachweises die Landeskoordinaten der nicht identischen Punkte zu berechnen.

Komplexausgleichung (Neupunktberechnung)

Zulässige Standardabweichungen a priori erfolgt mit festen identischen Punkten:

"Fest " (wird vom Programm vorgegeben)

Komplexausgleichung (Neupunktberechnung)


Spannmaße

Ifd. Nr		Anfpunkt		Endpunkt	Sp(gem.) m	S(V) cm	v cm	EV %	GF cm	NV	Sp(ber.) m
1	0	225/003	0	225/004	17.440	2.0	-0.2	99.8	0.2	0.1	17.437
2	0	225/003	0	225/756	26.430	2.0	1.8	59.6	-3.0	1.1	26.446
3	0	225/003	0	225/759	12.000	2.0	-1.2	47.6	2.5	0.8	11.988
4	0	225/752	0	225/753	4.900	2.0	0.3	38.5	-0.8	0.2	4.903
5	0	225/753	0	225/754	8.240	2.0	0.3	55.7	-0.5	0.2	8.242
6	0	225/756	0	225/757	8.580	2.0	0.2	32.9	-0.7	0.2	8.582
7	0	225/757	0	225/758	9.970	2.0	-0.1	6.4	1.6	0.2	9.968
8	0	225/758	0	225/759	20.380	2.0	-0.8	34.3	2.2	0.6	20.371
9	٧	9	0	225/003	17.860	2.0	1.9	60.2	-3.1	1.2	17.878
10	٧	9	0	225/754	16.640	2.0	-1.2	47.4	2.6	0.9	16.627
11	٧	9	0	225/758	9.530	2.0	1.8	40.6	-4.6	1.4	9.548

In der Komplexausgleichung werden die Spannmaße wie andere Beobachtungen entsprechend ihrer Gewichtung verarbeitet und tragen zur Koordinatenbestimmung bei. Zu beachten: Spannmaße = Kontrollmaße ?

Komplexausgleichung (Neupunktberechnung) Einrechnung Punkt in Gerade

Ordinate anklicken und auf "fest "setzen

Punkt wird hart mit iG (in Gerade) eingerechnet

+Punktnr. +Ordinate +S(V) +V-Y+EV-Y+GF-Y+NV-Y +Abszisse +S(V) +V-X+EV-X+GF-X+NV-X +cm. +% +cm. +cm. +cm. +% +cm.

Vorgang: → → + 1876 S.219 Laengeneinheit: $\rightarrow 1 = 1.000000$

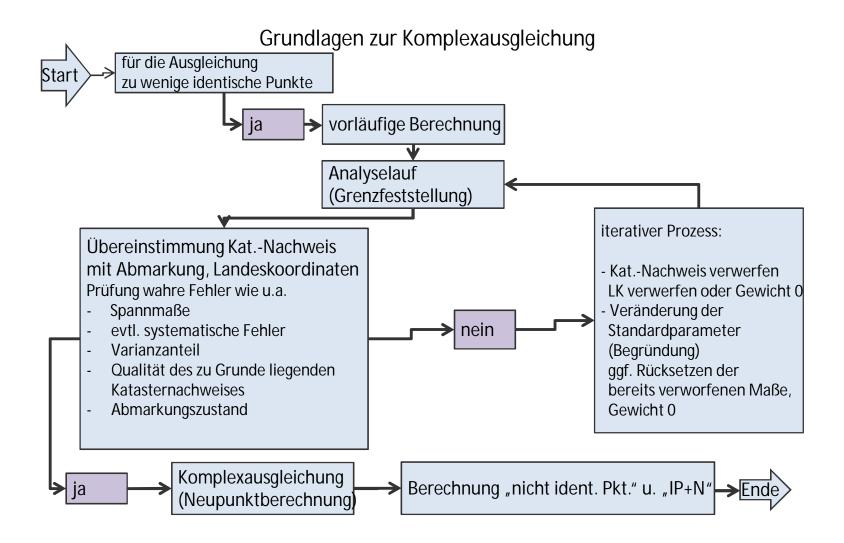
System: 2	→3468483.054×5353170.624 -0.456887×0.889478						→	1.000000	→10.0	→0.0	→ unkon	trolliert	
	→	130.207	' →	30.207+	0.45686	3.048	89525	→	0.999947	→10.0	→5.3	→ 1.7(-304.8)	<u> +4.0</u> *
→ 21 → 0	→ 225/	753	→0.000	0.0 →	→ 0.0	+	→fest	→	→0.000	→ 0.0	→ 0.0	→ fest	→
→22 → 0	÷225/	754	+0.000	0.0 →	→ 0.0	+	→fest	→	→8.240	→ 0.0	→ 0.0	→ +fest	→
+23+V		→ 9	+0.000	0.0 →	→ 0.0	+	→fest	→	→24.940	→ 0.0	→ 0.0	→ →fest	→

Vorgang: → → 1948 S. 313 Laengeneinheit: $\rightarrow 1 = 1.000000$

System: 3 → 3468478.864 > 5353201.537 - 0.871315 - 0.490726 **→1.000000 →10.0 →0.0** → 232.654 → 132.654+0.871317-0.490725 **→1.000003 →10.0 →-0.3** +24+0 $+0.000 \rightarrow 2.5 \rightarrow 1.3 \rightarrow 4.9 + 26.7 \rightarrow 2.4 \rightarrow 0.000 \rightarrow 2.5 \rightarrow -0.8 \rightarrow 58.3 \rightarrow 1.4 \rightarrow 0.4$ ±25±V - 17 هـ - 18 مـ 18 مـ 15 هـ - 18 مـ 18 مـ

Komplexausgleichung (Neupunktberechnung)

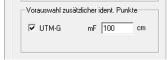
91. Nachweis Die endgültigen Ausgabeprotokolle


- der Überprüfung der Aufnahmeelemente und der identischen Punkte (Ausgleichung mit beweglichen identischen Punkten), [Analyselauf]

und

- der Berechnung der nicht identischen Punkte (Ausgleichung mit festen identischen Punkten), [Komplexausgleichung]

sind im Fortführungsriss abzulegen (Anlage 10) und nach Nummer 104.2 entsprechend auszuarbeiten.


- Allgemein
- Vorschrift
- Komplexausgleichung
 - Vorläufige Berechnung
 - Analyselauf (Grenzfeststellung)
 - Analyselauf (Grenzfeststellung) Bearbeitungsstrategie
 - Komplexausgleichung (Neupunktberechnung)
- Sonderfälle
- Fragen

Komplexausgleichung - Sonderfälle

Koordinaten mit Lagestatus G – Suchkoordinaten

- Standardfall: Punkte mit Landeskoordinaten als identische Punkte
- Ausnahmefall: Einbeziehung von Punkten mit niederem Lagestatus
 - Verbesserung von Suchkoordinaten
 - Verbesserung von Koordinaten aus Gründen der Homogenität

Vorgehensweise:

- Bestätigung der vorläufigen Berechnung mit OK
- anschließend direkt zur Neupunktberechnung

Die berechneten Koordinaten erhalten den Lagestatus des identischen Punktes mit dem niedrigsten Lagestatus.

Bei gleichem Lagestatus werden die bisherigen Koordinaten überschrieben.

Komplexausgleichung - Sonderfälle

Zeugenproblematik

➤ Zeugenpunkt kann in der 5-P-T mit einer Punktnummer verarbeitet werden: Berechnungszusatz IP+N

➤ bei Abmarkung: Punktkarussell V-Nummer für Zeugenposition erforderlich

➤ Komplexausgleichung mit IP+N:

Eingangswerte: Punktkoordinaten ---- Beobachtungen

bei normaler Gewichtung: Ausgeglichene Koordinaten als "Mittellage" aus

Punktkoordinaten und Beobachtungen

Alternativen:

a. Hohe Gewichtung der Beobachtungen: - neue Punktkoordinaten aus Maßen

(fest - Geradenproblematik) - hoher Einfluss auf Systemparameter

b. Geringe Gewichtung der Beobachtungen: - Punktkoordinaten bleiben unverändert

(verwerfe - Punkt in falscher Lage) - kein Einfluss auf Systemparameter

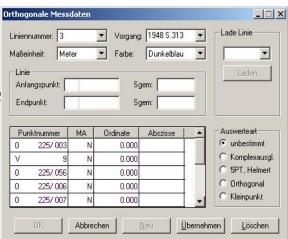
Mit der Komplexausgleichung ist (anders als mit 5-P-T) keine unabhängige Berechnung von Systemparametern und Punktkoordinaten möglich.

→ Verarbeitung von Zeugen mit V-Nummer

Komplexausgleichung - Sonderfälle

Einrechnung in die Gerade


- ➤ Einzelpunkt als geometrische Bedingung Beobachtung 200 gon mit hohem Gewicht
- ➤ Durchfluchtung mit orthogonalen Messdaten (Messungslinie)
 - Es können mehr als 3 Punkte beteiligt werden
 - Ordinatenwerte = 0
 - Abszissenwerte werden weggelassen,


keine gemessenen Abszissenwerte vorhanden.

Berechnungszusatz IP+N beim Punkt und Ordinate fest

Problemfälle:

- -2 Geraden widersprechen sich
 - -> ATPv hochsetzen (Abbruchschranke)
 - -> sonstige Lösung durch Anwender
- Extrapolationssituation Punktgenauigkeit hochsetz

Programm SYSTRA zur Komplexausgleichung

Zusammenfassung:

Programm SYSTRA zur Komplexausgleichung → Komplexe Anwendung

Iterativer Prozess zwischen Analyselauf (Grenzfeststellung) und Komplexausgleichung (Neupunktberechnung)

Programm SYSTRA zur Komplexausgleichung

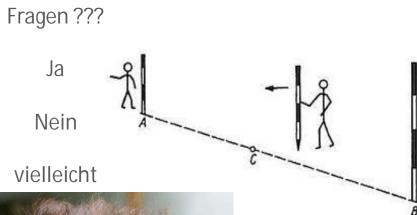
Vergleich:

Programm SYSTRA zur Komplexausgleichung mit anspruchsvolle Literatur:

KAFKA

Programm SYSTRA zur Komplexausgleichung

Vergleich:


Programm SYSTRA zur Komplexausgleichung mit anspruchsvolle Literatur:

KAFKA

Komplexe Analyse Flächenhafter Kataster Aufnahmen Entwickelt von der RWTH Aachen

Vielen Dank für Ihre Aufmerksamkeit